منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
A GENERALIZATION OF PRIME HYPERIDEALS
Let $R$ be a multiplicative hyperring. In this paper, we introduce and study the concept of n-absorbing hyperideal which is a generalization of prime hyperideal. A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of $R$ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$, then there are $n$ of the $alpha_i^,$s whose product ...
متن کاملA GENERALIZATION OF CORETRACTABLE MODULES
Let $R$ be a ring and $M$ a right $R$-module. We call $M$, coretractable relative to $overline{Z}(M)$ (for short, $overline{Z}(M)$-coretractable) provided that, for every proper submodule $N$ of $M$ containing $overline{Z}(M)$, there is a nonzero homomorphism $f:dfrac{M}{N}rightarrow M$. We investigate some conditions under which the two concepts coretractable and $overline{Z}(M)$-coretractable...
متن کاملA generalization of Bertrand's test
One of the most practical routine tests for convergence of a positive series makes use of the ratio test. If this test fails, we can use Rabbe's test. When Rabbe's test fails the next sharper criteria which may sometimes be used is the Bertrand's test. If this test fails, we can use a generalization of Bertrand's test and such tests can be continued innitely. For simplicity, we call ratio test,...
متن کاملA GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM
In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics
سال: 2008
ISSN: 2311-7990
DOI: 10.33899/csmj.2008.163973